
A Fermi National Accelerator Laboratory

FERMILAB-Conf-SW43

Design, Implementation, and Operation of a
Class Based Batch Queue Schedulei for VAX/VMS*

Keith Chadwick
Fermi National Accelerator Latxxatoly
P.O. Box 500, Batavia, Illinois 60510

May 20, 1988

*To be presented at the DECUS, Spring, 1988 Symposium, Cincinnati, Ohio, May 16-20, 1988

e Operilled by Universities Research Association Inc. under contract with the United States Department 01 Energy

Design, Implementation, and Operation of a
Class Based Batch Queue Scheduler for VAX/VMS

Keith Chadwick
Fermi National Accelerator Laboratory’

Batavia, IL 60510

Abstract

Fermilab found that the standard VMS batch configuration options were
inadequate for the job mix that exists on the Fermilab central computer facility
VAX cluster. Accordingly, Fermilab designed and implemented a class based
batch queue scheduler.

This scheduler makes use of the standard VMS job controller and batch
system. Users interact with the scheduler at job submission time by specification
of CPU time limits and batch job characteristics. This scheduler allows Fermilab
to make efficient use of our large heterogeneous VAX cluster which contains
machines ranging from B VAX 780 to B VAX 8800.

The scheduler was implemented using the VMS system services $GETQUI
and %SNDJBC, without changes to the existing VMS job scheduler. As a result,
the scheduler should remain compatible with future VMS versions.

This session will discuss the design goals, implementation, and operational
experience with Fermilab’s class based batch queue scheduler.

Introduction

The introduction by Digital of the VAX cluster has had
an enormous impact on VAX users and managers. Sev-
eral thousand VAX clusters have been installed and are in
operation today. More VAX clusters are being installed
daily and existing VAX clusters are growing larger and
more complex. Existing VAX clusters rival traditional
mainframe computers in aggregate compute power and
disk resources. With this increasing power and complexity,
greater and greater demands are placed on the standard
VAX/VMS batch job scheduler. In large VAX clusters, the
aggregate number of botch queues can quickly overwhelm
the unsophisticated user and even the experienced system
manager.

Fermilab in late 1986 WBJ rapidly approaching the
point of overwhelming complexity and diminishing returns
using the %tandard” Digital VAX cluster batch configu-
ration strategies. An assessment of the problem revealed

‘Fcrmilab is operated under EDreLICt to the United state, Dc-
partmcnt of Energy. Tbir material was prcpsrcd as c. part of work
rponsorcd by LhC LJnitccl state. l3cpartmcnt of Energy. The Dcped-
mcnt ol Energy, Univcrdtics Remarch Association, Inc., and their
agents snd cmployccs, m&c no wruurmty, exprcrs o* implied, and
~SIU~C no Lcgd liability or rcrpondbility for the eccurscy, complete-
rlC$II, or udutness of any information, appsrstus, product, o* pro-
cess disdoscd, nor rcprcscnt 0w.t itr use would not infringe privstcly
ovncd ripht..

that a radical departure from the usual VAX cluster batch
configuration options would be required in order to flex-
ibly support the projected growth in demand for batch
computing cycles at Fermilab.

The Fermilab Environment

The Fermilab central computing facility (FNAL) VAX
cluster currently has the following hardware:

. Processors: 1 VAX 8800, 2 VAX 8650’s, 1 VAX 8600,
2 VAX 785’s, and 1 VAX 780.

. Hsc’s: 2 RSC’lO’s, and 2 HSCSO’s.

l Disks: 40 RABl’s, and 12 RA82’s.

. Tapes: 14 TA78’s.

The user community currently numbers approximately
2800. Typical peak VAX cluster wide interactive loads
range from 250 to 280 simultaneous users (90 to 100 per
8650, and 70 to 80 on the 8600). The remaining processors;
the 8800, the two 785’s, and the 780 are used exclusively
for batch processing. Batch processing is also run on the
8650’s and the 8600 during non-prime hours.

Prior to the implementation of the batch queue sched-
uler, Fermilab’s VAX cluster batch queues were divided
into the five general “classes” described below:

l SYSTEM Job - Existed to perform system manage-
ment functions, housekeeping, backups, accounting
reports, etc.

l STANDBY Job - Existed to prevent cycles being lost
to the null process. Jobs in this class are run at a very
low priority, and typically involve calculations (such
as lattice gauge theory) which require several days of
CPU time.

l LONG Job - Existed to support long (many hours)
jobs that are generally CPU bound. Jobs in this class
are run at a low priority, and typi~cally involve cal-
culations (such as the large majority of “production”
analyses) which require on order one day of CPU time.

l MEDIUM Job - Existed to support moderate length
jobs that can be either CPU bound, or I/O bound but
that will complete in a finite amount of time. Jobs in
this class are run at a moderate priority, and typi-
cally involve calculations (such as creation of object
libraries, or initial debugging of analyses) which re-
quire at most four hours of CPU time.

l SHORT Job - Existed to reduce the interactive load,
by providing users with a pseudo-interactive turn
around in a batch job. Jobs in this class are run at a
relatively high priority, and typically involve short cal-
culations (such as compiles and links) which require
at most thirty minutes of CPU time.

The implementation of this batch system was straight
out of Digital’s Guide to VAX,/VMS Syalem Managemenl
and Daily Operations and Guide to I/AXcZusters: One
generic queue together with the associated executor queues
on each processor per job class. In addition to the above
general classes, there also existed special batch queues
(again with a generic and associated executor queues on
each processor) which were intended to provide additional
CPU cycles to specific users and/or groups.

The large number of generic and executor queues
(over 35 just for the general classes) resulted in a signifi-
cant user confusion as to the appropriate batch queues for
their batch jobs. The user would first have to estimate
the CPU requirements, then decide upon an appropriate
generic queue (some users liked to ‘(jump” over the generic
queue and submit directly into the executor queues), sub-
mit their job, and wait for the results. Typically users
were confused by the myriad available job classes, generic
queues, and executor queues.

In addition to the 11x1 confusion, the Fermilab envi-
ronment is somewhat unusual in that laboratory personnel
and their university collaborators may move from assign-
ment to assignment, or may simultaneously have multi-
ple assignments, during their stay at the laboratory. The
standard VMS grouping scheme would require that the
Fermilab VAX cluster management repeatedly modify the
user’s UIC in order to track these changes, or issue multi-
ple accounts to individual users on acontinuing basis. This

would in turn require that the user’s file base be repeat-
edly modified to assure proper file ownership. Fortunately
rights identifiers and access control lists were introduced
with VMS V4.0. The use of these tools has allowed Fer-
milab to track the current assignments by granting and
revoking the appropriate rights identifiers. Unfortunately
this flexibility at the file base level was not matched in
the batch queues; VMS did not allow the use of rights
identifiers and access control lists with batch queues.

Design Gods

The model used for the establishment of the design goals
for the batch queue scheduler was based on Fermilab’s ex-
isting batch queue organization. Based on this model, nu-
merous design goals were established for the batch queue
scheduler prior to the start of the actual implementation of
the software. These design goals were repeatedly examined
and reviewed during the implementation cycle and revised
as necessary and appropriate. This SASD methodology
resulted in the following list of design goals:

l Implement the batch queue scheduler in a familiar
high level language. The available programmer ex-
pertise at Fermilab resulted in the following languages
being considered: VAX Macro, VAX Basic, VAX C,
VAX Pascal, and VAX Fortran. VAX Fortran was fi-
nally chosen as the implementation language. The im-
plementation of the queue scheduler was highly modu-
lar with individual subroutines having well defined in-
puts, actions, and outputs. All source code, together
with the modifications, has been tracked with Digi-
tal’s Code Management System DEC/CMS.

l Implement the batch queue scheduler without re-
course to user written kernal mode code or modifica-
tion to the standard VMS job controller. The batch
queue scheduler interface to the VAX/VMS job con-
troller must only use documented systems services
and run time library routines. This requirement ba-
sically serves to ensure upward compatibility with fu-
ture versions of VAXfVMS.

l Sort batch jobs into classes based on the CPU time
limit and characteristics specified at the time of the
job submission, together with the user’s name, group,
and/or right’s identifiers held.

l Break down classes into four class types:

0 User

o Group/Charge Code

o (Rights) Identifier

o Generic

l Reduce the total number of generic and executor
batch queues (ideally to a single VAX cluster wide
generic queue, and a single executor queue per proces-
sor). Within executor queues, job “slots” are reserved

(pre-allocated) for batch jobs meeting the previously
defined classes. Support the allocation of the number
of jobs per processor proportionally to the relative
CPU power of the processor.

Eliminate direct user access to the executor queues,
and require users to submit their jobs into the generic
queue. Users are allowed to select or differentiate pro-
cessors via previously defined queue characteristics.

Allow management to restrict user access to other user
jobs such that B user may only examine the batch
queue enties of their jobs (or jobs submitted by mem-
bers of the same group/charge code).

Initiate batch jobs at the base priority appropriate to
the batch job class.

Support reasoneble job defaults:

0 CPU time = Infinite.

o No tape drives required.

o Working set = Executor queue working set.

Require users to specify their jobs tape, CPU, and
memory requirements if these requirements are differ-
ent that the default. The standard SUBMIT qual-
ifiers ICPUTIME, IWSDEFAULT, IWSEXTENT,
and ~WSQUOTA are used to inform the queue
scheduler of the CPU time and memory require-
ments. Queue characteristics ONE-TAPE, TWO-
-TAPE, THREE-TAPE, snd FOUR-TAPE s.re used
to signal the requirements of one, two, three, and four
tape drives respectively.

. Support the specification of CPU time limits in a form
independent of the actual executor queue chosen to
run the job. Executor queues are “rated” according
to the speed of the host processor.

l Support optional user notification (via a VAX cluster
wide broadcast) whenever B user’s batch jobs enter an
executor queue (only if the user specifies /NOTIFY
with the batch job).

. Support the “se of rights identifiers, usernames, and
groups to reserve slots for the defined classes in ex-
ecutor queues.

. Allow modification of the batch job mix without halt-
ing and restarting of the queue scheduler.

s Support multiple copies of the queue scheduler in or-
der to allow for automatic failover in the case where
the node that is running the active queue scheduler
crashes.

Implementation

Keeping the above list of design goals in mind, the follow-
ing is a general description of the queue scheduler:

. The active batch queue scheduler establishes B mutex
lock, so that the alternate batch queue schedulers do
not attempt to schedule the same batch queues.

. The queue scheduler then reads in the batch queue job
mix parameter file (this file is read in once per cycle
of the queue scheduler to allow modification of the
job mix on the ‘Lfly”). This file contains the following
information (an example parameter file is included in
the appendix):

o The name of the generic queue to schedule, the
default CPU time, and the maximum number
of jobs that B single user may have in execution
simultaneously. Example:

Gsnsric-queue <queue-name> -
/Dsfault_Cpu_Limit=<dslta_tima> -
/Job-Limit=#

o The class definitions (class name, CPU limit,
base priority, class type, the total number of
jobs which a single user may have in exe-
cution simultaneously under this class, and a
user/group/charge code/rights identifier name if
appropriate). Example:

Dsiins-Class <class-name> -
/Cpu_Limit=<dalta_tims> -
/Priority-# -

/Ussr=cusernsms> -

/Group=<chargs-coda> -
/Idantifisr=<string> -
/Gsneric -

/CiiolAlternats -
/Job-Limit=#

o The names of the executor queues to schedule
jobs into from the generic queue, the relative
CPU power of the host processor, and the to-
tal number of job slots in the executor queue.
Example:

Exacutor-queue cqusua-name> -
/Rslativs_CPU_Poasr=#.# -
/Total-Slota=#

o The slot reservations on & class by class basis on
each executor queue. Example:

Reaarve3lota cquoueJlms> -
/Clasa=<claea~n?.me> -
/Job-Limit=#

s The queue scheduler examines (“sing the %GETQUI
system service) the executor queues that it is schedul-
ing to determine the appropriate parameters.

o JOB-LIMIT

o WSDEFAULT

o WSEXTENT

o WSQUOTA

o CPU-DEFAULT

o CPU-MAXIMUM

o CHARACTERISTICS

s The qnene scheduler examines (using the $GETQUI
system service) the executor queues that it is schedul-
ing to determine if there are any open job slots.

s The qnene scheduler examines (using the $GETQUI
system service) the generic queue to determine if there
exists any pending jobs for the open job slots.

s Ifs. pending job requires CPU time greater than any
open job slot, then it is passed over.

s If B pending job requires a working set larger than the
working set of any executor queue with any open job
slot, then it is passed 0x1. Note that the working set
of the job slot is associated with the executor queue
in which the job slot resides.

s If a pending job requires tape drives, and there are in-
sufficient tape drives available, then it is passed over.

s If a open job slot is reserved for an account/charge
code/rights identifier, and the pending job does not
posses the appropriate account/charge code/rights
identifier, then it is passed over.

l If a pending job satisfies ALL the requirements of
sn open job slot, then it is copied into the open job
slat (via the $SNDJBC system service) in the target
executor queue. If the user specified the CPU time
required, then the CPU time specified must be con-
verted from “generic units” (typically VAX 11/780
units) into the target executor queue processor spe-
cific units (i.e. the user specified CPU time is di-
vided by the relative CPU power). The batch queue
scheduler modifies the parameters of the target ex-
ecutor queue, which allows the job to begin execution.
Once the job has begun execution, the target executor
queue parameters are restored to the default configu-
ration (refer to section below on Problems for further
details)

s After moving &pending job into the open job slot, the
queue scheduler issues a VAX cluster wide broadcast
(via the $BRKTHRU system service) to the user (if
the use1 submitted the batch job with the /NOTIFY
qualifier) in order to notify them that their job has
begun execution in the target executor queue.

. Finally the queue scheduler sleeps for 60 seconds, and
then resumes its task loop.

Problems

As one might expect with B project of this magnitude,
nnmerons minor problems and curiosities were encoun-
tered during the implementation of Fermilab’s batch queue
scheduler:

l The lack of VAX cluster clock synchronization
(“fixed” in VMS V4.6 with the addition of SET
TIME/CLUSTER).

s The generic batch queue must not have a list of target
executor qnenes, and the qualifier /NOGENERIC is
required on all executor queues in order to prevent the
standard VAX/VMS job scheduler scheduling batch
jobs into arbitrary executor queues.

s The inability of $CHECK-ACCESS system service to
support simple third party mode tests via the addition
of the rights identifier BATCH to B users default priv’s
(i.e. if the job is executing in batch, can user X access
tape drive N).

s The inability of a privileged user or application to
force VMS to start execution of a user’s batch job in
a batch queue to which the user does not possess write
axcess (solved by “toggling” the world write protec-
tion bit on the target executor queue after coping the
user’s job into the queue - not B very elegant solution).

VMS Enhancement Wish List

While implementing the class based batch queue scheduler,
the following enhancements to the standard VAX/VMS
job scheduler would have greatly simplified the task:

. A mechanism whereby the queue scheduler could re-
ceive AST notification from the job scheduler for
events of interest:

o Submission of B job into the SYSSBATCH
generic queue.

o Completion of a job in an executor queue.

A general solution might be to implement a new
qualifier /scHEDuLER=~~~~-~~~~ for the INITIAL-
IZE/QUEUE command. This qualifier would allow
users to specify an alternative job scheduler for spe-
cific batch queues in B similar manner as the /PRO-
CESSOR qualifier allows users to specify their own
print symbionts.

s Allow users to specify the qualifier /OPERA-
TOR=string when submitting batch jobs BS well as
print jobs. An example of n possible application in the
Fermilab environment would be for B use* to specify
the volume labels of the magnetic tapes that the job
will require via such an operator comment.

Operation

Fermilab has operated the class based batch queue sched-
uler since December 1986:

s Version 1.0 was put into operation in December 1986.
For the next 8 months the aueue scheduler was shaken
down on the SYSlFBATCH queue, and the remain-
ing generic q”e”e5 (SYSSSTANDBY, SYSSLONG,
SYSPSHORT, etc.) continued operation in parallel
“sing the standard VMS batch queue scheduling al-
gorithm.

list, for batch jobs which satisfy the require-
ments of the aforementioned job cless, contain-
ing one and only one entry. The default value of
this qualifier is /ALTERNATE. The “se of the
/NOiLTERNA+E qualifier is restricted to WY

special job classes (such as SYSTEM).

o An optional qualifier /DEFAULT-
_CPU_LIMIT=delta-time was added to the verb
GENERIC-QUEUE within the queue scheduler
parameter file. If this qualifier is not specified
the default value is /DEFAULT-CPU-LIMIT=-

s Version 2.0 ~8s installed in August 1987. class def-
initions corresponding to the existing generic queues
were placed in the queue scheduler paremeter file, and
the obsolete generic queues were deleted from the Fer-
milab VAX cluster.

o The qualifier /IDENTIFIER on the DEFINE-
-CLASS verb was enhanced to allow the presence
of an optional string /IDENTIFIER=slring. If
the string was not present, the name of the class
was used as the rights identifier and batch queue
characteristic which defined the class. If the
string ws present, then that string was used in-
stead of the name of the class. This enhancement
allows multiple queue classes to be defined with-
out requiring multiple rights identifiers.

o The mechanism within the queue scheduler for
determining the number of available tape drives
for s given user was extended, in order to support
the “se of wcess control lists (ACL’s) on tape
drives. The ACL’s were placed on selected tape
drives in order to preallocate them for specific
accounts and/or groups.

s Version 2.1 was installed in October 1987 with the
following enhancements:

o The job classification mechanism within the
queue scheduler was extensively modified in or-
der to generate & list of job classes which match
the parameters ofthe batch job. Prior versions of
the queue scheduler only matched B batch job to
at most two classes (one reserved and one generic
class). Version 2.1 of the queue scheduler gener-
ates a class search list of job classes (said cless
search list may contain from 0 to N elements,
where N is less than or equal to the number of
currently defined job classes). The class of the
batch job will be defined as the first entry in the
class search list for which there is an open job
slot.

0 An optional qualifier /[No]ALTERNATE W&S

added to the DEFINE-CLASS verb within
the queue scheduler parameter file. Specifica-
tion of the /NOALTERNATE qualifier for the
DEFINE-CLASS verb results in the class search

Infinite.

o The mutex logic which prevented multiple copies
of the queue scheduler from simultaneously at-
tempting to schedule jobs from a single generic
batch queue was changed to “se the distributed
lock management system services. Previous ver-
sions of the queue scheduler used B rather prim-
itive interlocking mechanism via FORTRAN
open statements.

o The verb EXECUTOR-QUEUE was created as
an alternate form of the DEFINE-QUEUE verb
within the queue scheduler parameter file.

o The weke up interval was changed from B fixed
delta time (typical value sixty seconds), to B
value randomly generated in the interval:

Note that the mean value will be equal to the
fixed wake up interval. This chenge WBS “nder-
taken to avoid possible phase lock interference
with user processes (an example of B possible in-
terference problem would be the inability for &
user to allocate tape drives since they and the
queue scheduler both “weke up” at one minute
intervals).

o The queue scheduler debug reports were exten-
sively reformatted in order to better display the
large number of queue scheduler queue classes
currently defined on the Fermilab VAX cluster.

s Version 2.2 WBS installed in April 1988 with the fol-
lowing enhancements:

o A lock value block was added to the lock block
passed to the distributed lock manager in order
to allow the non-active queue schedulers to deter-
mine the identification of the active queue sched-
uler without resort to the $GETLKI system ser-
vice.

o An optional qualifier /JOB-LIMIT was added
to the GENERIC-QUEUE and the DEFINE-
-CLASS verbs in the queue scheduler parameter
file. This qualifier WBS added to support the im-
plementation of user job limits. These job limits
are limits on the total number of simultaneous
jobs (under all classes, and on the number of

jobs within B specific class respectively) that an
individual user may have in execution on the sys-
tem. If this qualifier is not specified, the default
value is /JOB-LIMIT=Jnfinite.

o The string Default was added as B valid value
for the /CPU-LIMIT qualifier on the DEFINE-
-CLASS command within the queue scheduler
parameter file. The value used for Default is the
vaiue present on the /DEFAULT-CPU-LIMIT
qualifier on the GENERIC-QUEUE verb.

o The queue scheduler WBJ changed to use the
$GETQUI system service to determine the char-
acteristic number associated with the charac-
teristics ONE-TAPE, TWO-TAPE, THREE-
-TAPE, and FOUR-TAPE, rather than using
hard coded pammeter values.

o A bug which resulted in the job classification al-
gorithm being unable to correctly determine the
class of an already executing batch job w&s COT-
rected. This bug only manifested itself under ex-
tremely rare circumstances and configurations.

Summary

In general, Fermilab’s experience with the queue scheduler
has been very satisfactory, both from B systems manage-
ment viewpoint, and also from B users viewpoint. The
flexible configuration, together with the single point of
control provided by the queue scheduler parameter file
has repeatedly proven that the investment in the devel-
opment and support of the queue scheduler has been re-
paid handsomely. The users environment has been greatly
simplified, since the large number of generic queues and
executor queues has been reduced to &single VAX cluster
wide generic queue, together with one executor queue on
each VAX cluster processor. Turn around time is good,
even when large numbers of computationally bound jobs
s.re in execution and pending in the generic queue (users
sre quite happy to see their five minute compilation job
leapfrog dozens of long computation jobs pending in the
SYS$BATCH generic queue and “immediately” enter ex-
ecution). From & systems support viewpoint, the simpli-
fication of the users environment has resulted in a corre-
sponding decrease in the number of user complaints and
problems related to the batch queues. The ability to spec-
ify CPU time limits (in a processor independent fashion),
memory, and tape drive requirements has allowed the Fer-
milab VAX cluster management and the users to better
monitor and make use of the resources of Fermilab’s VAX
cluster.

Acknowledgements

I wish to thank David J. Ritchie, Steven J. Kaliss, and
Chip Kaliher of the Fermilab DEC Systems Group for their
contributions to the discussions which provided the basis
for the design of Fermilab’s batch queue scheduler.

References

Digital Equipment Corporation. Guide to VAX/VMS
System Management and Daily Operations, Version 4.0,
September 1984, Order number AA-YBOIA-TE.

Digital Equipment Corporation. Guide lo VAXclus-
ters, Version 4.0, September 1984, Order number AA-
Y513A-TE.

Digital Equipment Corporation. VAX/VMS DCL
Dictionary, Version 4.4, April 1986, Order number AA-
ZZOOC-TE.

Digital Equipment Corporation. VAX/VMS System
Servicer Reference Manual, Version 4.4, April 1986, Order
numbers AA-ZSOlB-TE, AD-ZSOlB-Tl.

.

Appendix - Example Parameter File

Gsnaric_Queua SYS$BATCH /Dsfault_Cpu_Limit=Infinite /Job-Limit=10

Define-Class System /Cpu_Limit=Infinite /Priority=4 /User /NoAltsmats
Dofins-Class CDF-Short-Job /CpU_Limit=00:30:00 /Priority=4 /Idsntifisr=CDF_Experimsnt /Job-Limit=4
Define-Class CDF-Medium-Job /CpU_Limit=04:00:00 /Priority=3 /Idsntifisr=CDF_Experimant /Job-Limit=4
Define-Class CDF-Long-Job /CPU-Limit=Infinite /Priority=2 /Idsntifier=CDF_Exparimant /Job-Limit=2
Define-Class CDF-Reduction /Cpu_Limit=Infinite /Priority=6 /Identifier /NoAlternate /Job-Limit=1
Dsfina-Class CDF_Servar /Cpu-Limit=Infinite /Priority=4 /User /NoAltsmata /Jab-Limit=1
Dafina_Claaa E687-C /CPU-Limit=Iniinits /Priority=2 /Group /Job-Limit=1
Dsfina-Class Short-Job /Cpu_Limit=00:30:00 /Priority=4 /Genaric /Job-Limit=4
Define-Class Medium-Job /Cpu_Limit=04:00:00 /Priority=3 /Gsnaric /Job-Limit=4
Define-Class Long-Job /CPU-Limit=Infinite /Priority=2 /Generic /Job-Limit=4

Executor-Queue FNALA-BATCH /Rslativs_CPU_Poaer=l.S /Total-Slots-7
Executar_Qusus FNALB-BATCH /Rslativa_CPU_Poaer=6.6 /Total-Slots=10
Executor-Queue FNALC-BATCH /Rslativs_CPU_Poasr=6.6 /Total-Slots=10
Executor-Queus FNALD-BATCH /Rslstivs_CPU_Poasr=l.6 /Total-Slots=7
Executor-Quaua FNALE-BATCB /Rslativs_CPU_Poaar=4.0 /Total-Slots=16
Exacutor-Queue FNALF-BATCB /Relativs_CPU_Powor=S.S /Total-Slots=24
Executor-Queue FNALG-BATCH /Rslativa_CPU_Pouer=l.O /Total-Slots=6

Rasarva-Slots FNALA-BATCH /Class=Systsm /Job-Limit=2
Reserve-Slots FNALA-BATCH /Class-Short-Job /Job-Limit=1
Ressrve-Slots FNALA-BATCH /Class=CDF-Short-Job /Job-Limit=1
Rassrva-Slots FNALB-BATCH /Class=System /Job-Limit-2
Rssarva-Slots FNALB-BATCH /Class=Madium-Job /Job-Limit=2
Reserve-Slots FNALB-BATCH /Class=CDF-Medium-Job /Job-Limit=2
Raserve-Slots FNALC-BATCH /Class=Systsm /Job-Limit=2
Rsssrvs-Slots FNALC-BATCH /Class=Long-Job /Job-Limit=1
Ressrve-Slots FNALC-BATCH /Class=CDF-Long-Job /Job-Limit=1
Rassrva-Slots FNALD-BATCH /Class=Systsm /Job-Limit=2
Rss0rvt.-si0ts FNALD-BATCH /c~~ss=EB~~..c /Job-Limit=2
Reserve-Slots FNALE-BATCH /Class=Systam /Job-Limit=2
Reserve-Slots FNALE-BATCH /Claas=CDF-Sarvar /Job-Limit-l
Rsssrvs-Slots FNALF-BATCH /Class=System /Job-Limit-2
Reserve-Slots FNALF-BATCH /Class-Short-Job /Job-Limit=2
Rasarvs-Slots FNALF-BATCE /Claaa=CDF-Short-Job /Job-Limit=2
Reserve-Slots FNALF-BATCH /Class=Msdium-Job /Job-Limit-2
Ressrvo-Slots FNALF-BATCE /Class=CDF-Medium-Job /Job-Limit-2
Raaarvs-Slots FNALF-BATCH /Class-Long-Job /Job-Limit=3
Rsssrvs-Slots FNALF-BATCH /Class=CDF-Long-Job /Job-Limit=3
Rsserve-Slots FEALF-BATCH /Class=CDF-Reduction /Job-Limit=1

